

NEW TRITERPENOID SAPONINS FROM *CORCHORUS ACUTANGULUS*

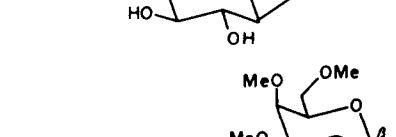
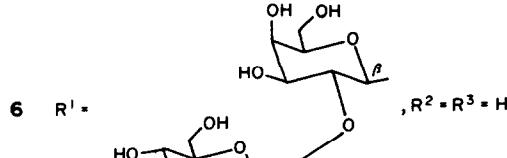
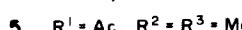
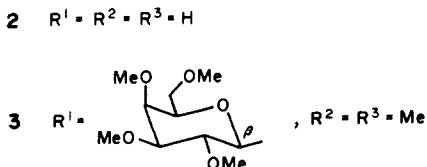
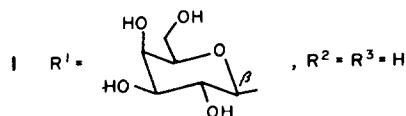
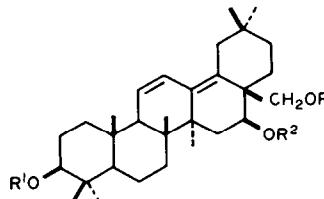
SHASHI B. MAHATO*, BIKAS C. PAL and SUDIP K. SARKAR

Indian Institute of Chemical Biology, 4, Raja Subodh Mullick Road, Jadavpur, Calcutta-700032, India

(Received 20 July 1987)

Key Word Index—*Corchorus acutangulus*, Tiliaceae, corchorusin C₁; corchorusin D₁, corchorusin D₂; corchorusin D₃, triterpenoid saponins, structural determination.

Abstract—Four new triterpenoid glycosides, corchorusins C₁, D₁, D₂ and D₃ isolated from the aerial parts of *Corchorus acutangulus* were respectively identified as saikogenin C, 3-O- β -D-galactopyranoside, saikogenin B, 3-O- β -D-glucopyranosyl (1 \rightarrow 2)- β -D-galactopyranoside, longispinogenin, 3-O- β -D-glucopyranosyl (1 \rightarrow 2)- β -D-galactopyranoside and saikogenin C, 3-O- β -D-glucopyranosyl (1 \rightarrow 2)- β -D-galactopyranoside (**6**) based on their spectroscopic properties and some chemical transformations.







INTRODUCTION

In a previous communication [1], we reported the isolation and structural elucidation of four new triterpenoid glycosides, corchorusins A-D obtained from the leaves of *Corchorus acutangulus*. The close similarity in structure of these corchorusins with the saikosaponins isolated so far only from the medicinally important *Bupleurum* sp [2-4] (Umbelliferae) of Japan, China and Korea prompted us to investigate further for the other saponin constituents of the leaves. We have been successful in isolating a further four new saikosaponin-like triterpenoid glycosides. This paper reports the isolation and structure elucidation of these biologically important saponins.

RESULTS AND DISCUSSION

The *n*-BuOH soluble fraction of the methanolic extract of the leaves of *C. acutangulus* on chromatographic purification followed by systematic HPLC separation led to the isolation of four more new triterpenoid glycosides which we have called corchorusins C₁, D₁-D₃.

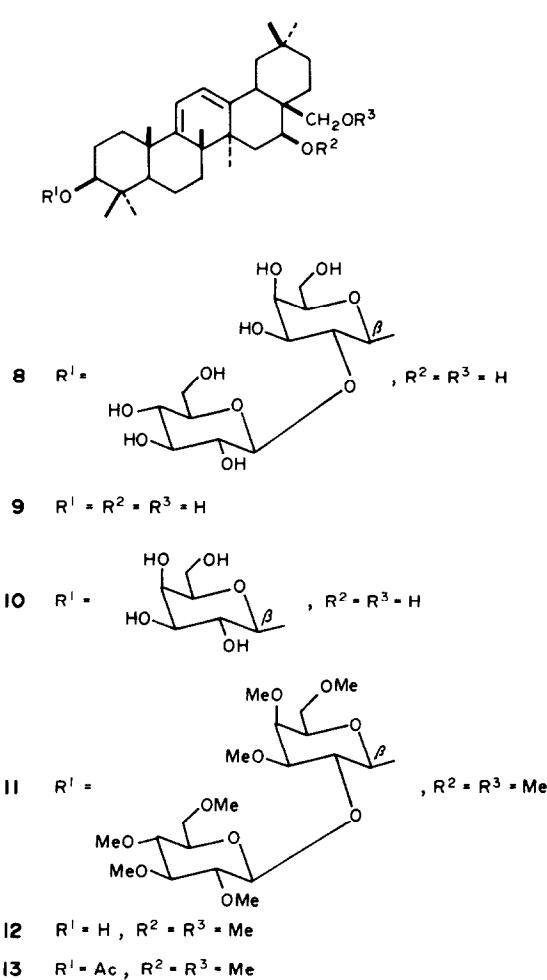
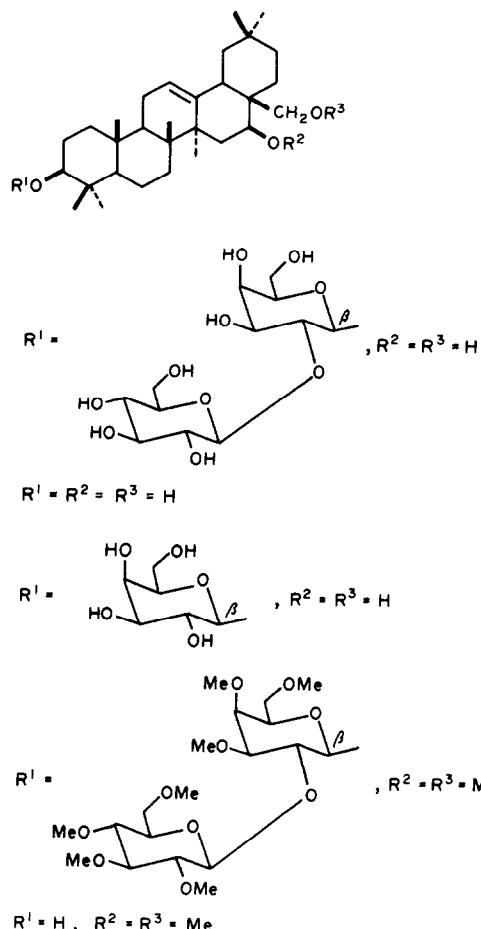
Corchorusin C₁ (**1**) on acid hydrolysis yielded a genin (**2**), and a sugar constituent, identified by PC and GC as D-galactose by comparison with an authentic sample. The genin (**2**) exhibited three UV maxima characteristic of a heteroannular diene. It was identified as saikogenin C by comparison with an authentic sample [5]. That saikogenin C (**2**) is the genuine aglycone of the saponin (**1**) was ascertained by ¹³C NMR spectral data of the latter (Table 1) which shows the characteristic signals assignable to the carbons of the compound (**2**). The permethylate (**3**) obtained by treatment of compound (**1**) with sodium hydride-methyl iodide in hexamethylphosphoramide (HMPA) exhibited in its ¹H NMR spectrum a signal at δ 4.24 (1H, *d*, *J* = 7 Hz) assignable to the H-1 of galactose indicating the β -configuration (⁴C₁ conformation) at the anomeric centre of the sugar. The anomeric configuration was further supported by the application of Klyne's rule [6] of molecular rotation. The permethylate (**3**) on hydrolysis led to the formation of 2,3,4,6-tetra-O-methyl-D-galactose and 16,28-di-O-methyl-saikogenin C (**4**) whose acetate (**5**) showed in its ¹H NMR spectrum a

signal at δ 4.82 (1H, *dd*, *J* = 10.5 and 6 Hz) assignable to the C-3 proton geminal to the AcO group. Thus, the attachment of galactose in corchorusin C₁ was demonstrated. The ¹³C NMR data of compound (1) (Table 1) also supported its structure as saikogenin C3-*O*- β -D-galactopyranoside (1).

Corchorusin D₁ (8) displayed an UV absorption maximum at 280 nm characteristic of a homoannular diene system. On hydrolysis it yielded D-glucose and D-galactose (identified by GC of their alditol acetates and comparison with authentic samples) and a genin which was eventually characterised as saikogenin B (9) by comparison of its mp, $[\alpha]_D$ and ¹H NMR data with those of

an authentic sample [7]. The sequence of the two hexoses in compound (8) was deduced by the generation of the prosapogenin (10) by partial hydrolysis, which on acid hydrolysis liberated the aglycone (9) and the only sugar constituent, identified as D-galactose. Consequently, it was demonstrated that galactose is directly linked to saikogenin B (9), and that glucose is present as the terminal sugar. Moreover, the permethylate (11) on acid hydrolysis yielded 2,3,4,6-tetra-*O*-methyl-D-glucose and 3,4,6-tri-*O*-methyl-D-galactose as sugar constituents, and 16,28-di-*O*-methyl saikogenin B (12). The acetate (13) of compound (12) showed in its ¹H NMR spectrum a characteristic signal indicating the presence of an acetoxy

Table 1 ¹³C NMR chemical shifts δ _C (± 0.1) of saikogenin C (2), saikogenin B (9), longispinogenin (15), corchorusin C₁ (1), corchorusin D₁ (8), corchorusin D₂ (14) and corchorusin D₃ (6) measured in pyridine



Carbon	(2)	(1)	(9)	(8)	(15)	(14)	(6)
1	37.8	38.4	37.8	37.7	38.8	39.5	38.4
2	28.0	26.5	28.7	27.1	26.8	26.3	26.4
3	78.5	89.0	77.8	88.9	78.8	89.0	89.0
4	39.7	39.6	39.6	39.7	38.9	38.9	39.6
5	55.6	55.4	51.8	52.0	55.2	55.9	55.5
6	18.9	18.5	18.6	18.4	18.3	18.4	18.5
7	33.0	32.7	32.6	33.2	32.6	33.3	32.6
8	40.2	40.3	43.1 ^a	43.2 ^a	39.8 ^a	40.1 ^a	40.4
9	54.5	54.4	154.9	154.9	46.9	47.2	54.3
10	37.0	36.7	39.0	38.4	37.0	36.7	36.6
11	127.1	127.0	116.1	116.0	23.5	24.1	127.0
12	125.8	125.7	121.2	121.2	122.3	122.6	125.8
13	136.6	136.5	145.3	145.3	143.2	143.8	136.4
14	44.4	44.3 ^a	43.2 ^a	42.9 ^a	43.7	43.9	44.3
15	35.1	35.2	36.1	36.0	36.0	36.6	35.2
16	76.3	76.2	66.9	67.1	67.5	66.9	76.1
17	44.4	44.4 ^a	40.6	40.5	40.2 ^a	39.5 ^a	44.3
18	133.4	133.3	42.6	42.3	44.7	44.6	133.3
19	38.7	39.5	47.0	47.1	46.9	47.2	39.6
20	32.6	32.3	31.0	31.0	30.7	30.9	32.2
21	35.3	34.9	34.1	34.2	33.8	33.5	34.8
22	30.2	29.9	26.2	26.1	26.2	26.3	29.8
23	27.8	27.4	28.8	28.4	28.0	28.1	27.3
24	15.9	16.0	16.6	16.8	16.0	16.5	16.2
25	18.3	18.2	21.0 ^b	21.0 ^b	15.6	15.6	18.2
26	17.2	17.1	21.3 ^b	21.4 ^b	16.7	16.9	17.0
27	22.1	22.0	25.5	25.4	26.8	27.0	22.0
28	64.0	63.9	69.4	69.6	70.8	69.8	63.9
29	25.0	24.8	33.2	33.2	33.0	33.0	24.9
30	32.3	32.2	24.0	24.2	23.9	23.8	32.2
Gal-1	105.7		105.5 ^c		105.4 ^b	105.6 ^a	
Gal-2	72.7		81.4		81.1	81.4	
Gal-3	74.9		71.8		71.7	71.7	
Gal-4	69.7		69.8		69.8	69.9	
Gal-5	76.0		76.5		76.4	76.4	
Gal-6	61.9		62.1 ^d		62.0 ^e	62.1 ^b	
Glc-1			105.1 ^c		105.0 ^b	105.1 ^a	
Glc-2			75.2		75.1	75.1	
Glc-3			77.9		77.8	77.8	
Glc-4			71.8		71.7	71.7	
Glc-5			77.6		77.5	77.6	
Glc-6			62.8 ^d		62.7 ^c	62.8 ^b	

^{a-d} Signals may be interchanged within each vertical column
Gal = Galactose, Glc = Glucose

function at C-3. Consequently, the linkages of the two sugar units could be demonstrated. The β -linkages (4C_1 conformation) of the two anomeric protons were evident from the 1H NMR spectrum of compound (11). The ^{13}C NMR spectrum of corchorusin D₁ (8) (Table 1) is in agreement with the structure shown. The signal assignments of compound (8) were made by comparison of the ^{13}C NMR data of the aglycone [2] (9) and the methyl sugars [8] using known chemical shift rules [9] and glycosylation shifts [10, 11]. Thus, corchorusin D₁ was shown to be saikogenin B 3- O - β -D-glucopyranosyl (1 \rightarrow 2)- β -D-galactopyranoside (8).

Corchorusin D₂ (14) was transparent in its UV spectrum above 205 nm and on acid hydrolysis it liberated D-glucose and D-galactose as sugar constituents, and longispinogenin (15) as the aglycone, identified by direct comparison with an authentic sample [7, 12]. Its ^{13}C NMR spectrum (Table 1) strongly suggested that the structure of its carbohydrate moiety is similar to that of corchorusin D₁ (8) and the complete structure of this saponin as shown was ascertained by generation of the prosapogenin (16), characterised as corchorusin A [1] by direct comparison and preparation of the permethylate (17) followed by hydrolysis and identification of the partially methylated sugars and the genin (18).

The UV spectrum of corchorusin D₃ (6) displayed the triple absorption maxima characteristic of heteroannular

diene and on acid hydrolysis it afforded D-glucose, D-galactose as sugars and saikogenin C (2) as the aglycone. Its structure as saikogenin C3- O - β -D-glucopyranosyl (1 \rightarrow 2)- β -D-galactopyranoside (6) was established by the study of its ^{13}C NMR data (Table 1) and also by the preparation of its permethylate (7) followed by hydrolysis and identification of the partially methylated sugars.

It is noteworthy that saikosaponins containing saikogenins as aglycones and different combinations of fucose, glucose and rhamnose have been reported so far only from various medicinally used *Bupleurum* species (Umbelliferae) occurring in Japan, China and Korea [13]. Some of the saikosaponins have been reported to have antiviral [14], antiinflammatory [15], haemolytic [16] and plasma-cholesterol lowering [17] activity. *C. acutangulus* growing wild in India appears to be the only alternative plant of different genus and family so far which contains saikosaponins-like compounds. The activity profile of the corchorusins seems to be very interesting in view of their structural similarity with the saikosaponins.

EXPERIMENTAL

Mps uncorr TLC was carried out on silica gel 60 HF₂₅₄ (Merck) with the following solvent systems (A) benzene-CHCl₃-EtOAc (1:2:2), (B) H₂O-CHCl₃ (1:30) and then MeOH was added until the soln became clear. PC for sugars was performed on Whatman No 1 with solvent system (C): *n*-BuOH-pyridine-H₂O (6:4:3), other solvent systems are

detailed in the text. A satd soln of aniline oxalate in H_2O was used as visualization agent. GC was carried out on the following columns (i) 3% ECNSS-M at 190° for alditol acetates and (ii) OV-225 at 195° for partially methylated alditol acetates. IR spectra were recorded in Nujol mulls. ^1H NMR spectra were recorded at 100 MHz in CDCl_3 or $\text{C}_5\text{D}_5\text{N}$ solns. ^{13}C NMR spectra were recorded on the same instrument operating at 25 MHz using CDCl_3 or $\text{C}_5\text{D}_5\text{N}$ solns with TMS as int standard. HPLC analysis was done with a Spherisorb S-10-ODS reversed phase column (25 cm length, id 10 mm) with a RI detector. Petrol refers to the fraction boiling in the range 60–80°.

Isolation of saponins. Air-dried powdered aerial parts of *C. acutangulus* Lam (1.3 kg) was successively extracted with petrol, CHCl_3 and MeOH. The MeOH extract was partitioned between *n*-BuOH and H_2O . The organic layer was concd to dryness under red pres to give a residue (36 g) which was chromatographed on silica gel (800 g). Gradient elution was effected with CHCl_3 followed by CHCl_3 -MeOH mixts. Fractions (250 ml each) were monitored by TLC. Early fractions eluted with CHCl_3 -MeOH (9:1) and (17:3) yielded previously reported [1] corchorusins A, B and C and the fractions eluted with CHCl_3 -MeOH (87:13) and (4:1) were collected and subjected to HPLC sepn on a reversed-phase Spherisorb S-10-ODS column with MeOH- H_2O (3:1) and (7:3). Thus, corchorusin C₁ (0.16 g), D (0.25 g), D₁ (0.21 g), D₂ (0.17 g) and D₃ (0.23 g) were isolated of which the structure elucidation of corchorusin D has already been reported [1].

Corchorusin C₁ (**1**) Crystallized from CHCl_3 -MeOH as micro-needles, mp 253–255°, $[\alpha]_D$ −45° (MeOH, c 0.25) (Found C, 69.9, H, 9.50 $\text{C}_{36}\text{H}_{58}\text{O}_8$ requires C, 69.97, H, 9.45%).

Hydrolysis of corchorusin C₁ (**1**). **1** (80 mg) on hydrolysis with 2 M HCl in aq MeOH (15 ml) at 100° for 5 hr followed by usual work-up yielded saikogenin C (**2**) (30 mg), mp 291–293°, $[\alpha]_D$ −46° (c 0.35 in pyridine) (lit [5] mp 291–294°, $[\alpha]_D$ −45.8°). ^1H NMR data comparable with authentic sample. The filtrate from the hydrolysate was neutralized with Ag_2CO_3 , filtered and a portion of the filtrate concd under red pres and tested for sugars by PC using *n*-BuOH-pyridine- H_2O (6:4:3). Only one spot corresponding to D-galactose was obtained. The other portion of the filtrate was reduced with NaBH_4 and worked-up in the usual way. The residue was acetylated with Ac_2O -pyridine (1:1) at 100° for 1 hr, dried *in vacuo*, purified by chromatography over silica gel and subjected to GC analysis on column (i). A single peak, corresponding to D-galactitol acetate, was obtained.

Permethylolation of corchorusin C₁ (**1**) and hydrolysis. A soln of **1** (80 mg) in HMPA (10 ml) was treated with NaH (400 mg) and MeI (10 ml) at room temp for 3 hr. After work-up as usual the residue was purified by chromatography to yield the permethylate (**3**) (68 mg) as a colourless powder, IR (no hydroxy absorption), ^1H NMR (CDCl_3) δ 0.77 (3H, s), 0.81 (3H, s) 0.88 (3H, s), 0.94 (3H, s), 1.01 (3H, s) 1.05 (3H, s), 1.20 (3H, s) (together 7 \times Me), 3.25, 3.32, 3.45, 3.48, 3.55, 3.62 (together 6 \times OMe), 3.84 (1H, d, J = 7 Hz, 28-H), 4.0 (1H, d, J = 7 Hz, 28-H') 4.28 (1H, d, J = 7.5 Hz, 1-H of galactose), 5.58 (1H, d, J = 11 Hz) and 6.40 (1H, dd, J = 11 and 2 Hz, 11-H, 12-H). The permethylate (**3**) (25 mg) was hydrolysed with 2 M HCl in aq MeOH (10 ml) for 3 hr. The reaction mixt was cooled, evapd to dryness *in vacuo*, dil with H_2O and filtered. The filtrate was neutralized with Ag_2CO_3 and filtered. The filtrate was concd, reduced with NaBH_4 and worked-up in the usual manner. The residue was acetylated with Ac_2O -pyridine (1:1) at 100° for 1 hr, dried *in vacuo* and subjected to GC analysis using column (ii). Only one peak was detected and this was identified as 2,3,4,6-tetra-O-methyl-D-galactitol diacetate by comparison with an authentic sample. The residue on chromatographic purification yielded 16,28-di-

O-methylsaikogenin C (**4**) (10 mg), mp 137–139°, $[\alpha]_D$ −45° (CHCl_3 , c 0.5), (lit [18] mp 138–140°, $[\alpha]_D$ −44°).

Corchorusin D₁ (**8**). Crystallized from MeOH as needles, mp 234–236° (dec), $[\alpha]_D$ +176° (MeOH, c 0.19), UV $\lambda_{\text{max}}^{\text{MeOH}}$ 280 nm (ε 8100) (Found C, 64.5, H, 8.8 $\text{C}_{42}\text{H}_{68}\text{O}_{13}$ requires C, 64.59, H, 8.78%).

Hydrolysis of corchorusin D₁ (**8**). **8** (80 mg) was hydrolysed with 2 M HCl in aq MeOH (10 ml) and worked-up as usual to yield D-galactose and D-glucose (identified by GC comparison of alditol acetates with authentic samples) as sugar components and saikogenin B (**9**) (22 mg), mp 268–269°, $[\alpha]_D$ +278° (MeOH, c 0.92), (lit [7], 267–269°, $[\alpha]_D$ +285.5°).

Permethylolation of corchorusin D₁ (**8**) and hydrolysis. Permethylolation of **8** (90 mg) was done as described for corchorusin C₁ to give the permethylate (**11**) as a colourless powder (82 mg), mp 102–105°, ^1H NMR (CDCl_3) δ 0.84 (3H, s), 0.88 (3H, s) 0.96 (3H, s), 1.08 (6H, s), 1.16 (3H, s), 1.28 (3H, s) (together 7 \times Me), 3.28 (3H, s), 3.36 (3H, s), 3.40 (3H, s), 3.42 (3H, s), 3.52 (6H, s), 3.56 (6H, s), 3.64 (3H, s) (together 9 \times OMe), 3.88 (1H, d, J = 8 Hz 28-H), 4.02 (1H, d, J = 8 Hz, 28-H'), 4.28 (1H, d, J = 7 Hz, 1-H of galactose unit), 4.72 (1H, d, J = 7 Hz, 1-H of glucose unit) and 5.60 (2H, s, 11-H, 12-H). The permethylate (**11**) (50 mg) was hydrolysed in refluxing 2 M HCl in aq MeOH (15 ml) for 3 hr. The carbohydrate and aglycone fractions were worked-up as described for compound (**3**) above. The peaks corresponding to 3,4,6-tri-O-methyl-D-galactitol triacetate and 2,3,4,6-tetra-O-methyl-D-glucitol diacetate were identified by comparison with authentic samples. The partially methylated aglycone was purified as usual to give 16,28-di-O-methylsaikogenin B (**12**) (15 mg), mp 135–137°, $[\alpha]_D$ +272° (CHCl_3 , c 0.81) (Found C, 79.2, H, 10.8 $\text{C}_{32}\text{H}_{52}\text{O}_3$ requires C, 79.28, H, 10.81%). The monoacetate (**13**) prepared in the usual manner shows mp 128–129°, $[\alpha]_D$ +263° (CHCl_3 , c 0.52), ^1H NMR (CDCl_3) δ 4.85 (1H, dd, J = 10.5 and 6 Hz, 3-H) (Found C, 77.6, H, 10.3 $\text{C}_{34}\text{H}_{54}\text{O}_4$ requires C, 77.52, H, 10.33%).

Prosapogenin (**10**) and *saikogenin B* (**9**). Corchorusin D₁ (**8**) (55 mg) was hydrolysed with 0.75 M H_2SO_4 in EtOH (6 ml) at 100° for 20 min. After usual work-up the ppt was subjected to prep TLC (CHCl_3 -MeOH, 4:1). Thus, the partially hydrolysed prosapogenin (**10**) (5 mg) and saikogenin B (**9**) were isolated in a pure state. Compound (**10**) on crystallization from MeOH yielded microneedles, mp 246–248°, $[\alpha]_D$ +256° (MeOH, c 0.65) (Found C, 69.8, H, 9.5 $\text{C}_{36}\text{H}_{58}\text{O}_8$ requires C, 69.87, H, 9.45%). On acid hydrolysis this prosapogenin liberated saikogenin B (**9**) and D-galactose.

Corchorusin D₂ (**14**), *longispinogenin* (**15**) and *prosapogenin* (**16**). Compound (**14**) crystallized from MeOH as needles, mp 222–224°, $[\alpha]_D$ +24.8° (MeOH, c 0.25) (Found C, 64.5, H, 9.0 $\text{C}_{42}\text{H}_{70}\text{O}_{13}$ requires C, 64.42, H, 9.01%). On usual acid hydrolysis it afforded longispinogenin (**15**) mp 220–221°, $[\alpha]_D$ +67°, (lit [7], mp 222–223°, $[\alpha]_D$ +68°). D-galactose and D-glucose. Compound (**14**) on partial hydrolysis as described for (**8**) yielded prosapogenin (**16**) identical in all respects with corchorusin A [1].

Permethylate (**17**) and *partially methylated aglycone* (**18**). Compound (**14**) (75 mg) was permethylated as described for corchorusin C₁ (**1**). The permethylate (**17**) was obtained as a colourless powder (60 mg), mp 124–126°, ^1H NMR (CDCl_3) δ 0.82 (3H, s), 0.90 (3H, s), 0.92 (6H, s), 0.98 (3H, s), 1.04 (3H, s), 1.20 (3H, s) (together 7 \times Me), 3.28 (3H, s), 3.32 (3H, s), 3.33 (3H, s), 3.37 (3H, s), 3.48 (3H, s), 3.52 (3H, s), 3.56 (3H, s), 3.58 (3H, s), 3.60 (3H, s) (together 9 \times OMe), 4.24 (1H, d, J = 7 Hz, 1-H of galactose), 4.70 (1H, d, J = 7 Hz, 1-H of glucose) and 5.28 (1H, m, 12-H). On usual acid hydrolysis it afforded 3,4,6-tri-O-methyl-D-galactose, 2,3,4,6-tetra-O-methyl-D-glucose identified as described above and 16,28-di-O-methyl longispinogenin [1] (**18**).

Corchorusin D₃ (**6**) and permethylate (**7**). Compound (**6**) crystallized from MeOH as micro-needles, mp 240–242°, $[\alpha]_D^{25} -19^\circ$ (MeOH, *c* 0.32), $\lambda_{\text{max}}^{\text{MeOH}}$ 242 (*ε* 22300), 251 (*ε* 24600) and 261 nm (*ε* 16400) (Found: C, 64.5, H, 8.8 C₄₂H₆₈O₁₃ requires C, 64.59, H, 8.78%). Compound (**6**) (70 mg) on permethylation as described above afforded the permethylate (**7**) as colourless powder (55 mg), mp 120–122°; ¹H NMR (CDCl₃): δ 0.76 (3H, s), 0.80 (3H, s), 0.88 (3H, s), 0.96 (3H, s), 1.0 (3H, s), 1.04 (3H, s), 1.28 (3H, s) (together 7 × Me), 3.24 (3H, s), 3.32 (3H, s), 3.40 (6H, s), 3.46 (3H, s), 3.48 (3H, s), 3.54 (3H, s), 3.56 (3H, s), 3.62 (3H, s) (together 9 × OMe), 3.84 (1H, *d*, *J* = 8 Hz, 28-H), 4.0 (1H, *d*, *J* = 8 Hz, 28-H'), 4.28 (1H, *d*, *J* = 7 Hz, 1-H of galactose), 4.72 (1H, *d*, *J* = 7 Hz, 1-H of glucose), 5.57 (1H, *d*, *J* = 12 Hz) and 6.42 (1H, *dd*, *J* = 2, 12 Hz, 11-H, 12-H)

Acknowledgements—We thank Sri P P Ghosh Dastidar of this Institute for the NMR spectra and Sri R Mahato of this Laboratory for technical assistance

REFERENCES

- 1 Mahato, S B and Pal, B C (1987) *J Chem Soc., Perkin Trans I* 629
- 2 Shimaoka, A, Seo, S and Minato, H (1975) *J Chem Soc., Perkin Trans I* 2043
- 3 Shimizu, K, Amagaya, S. and Oghara, Y (1985) *Chem Pharm Bull.* **33**, 3349
- 4 Ding, J K., Fujino, H, Kasai, R, Fuzimoto, N, Tanaka, O, Zhou, J, Matsuura, H and Fuwa, T (1986) *Chem. Pharm Bull.* **34**, 1158
- 5 Kubota, T, Tonami, F and Hinoh, H (1967) *Tetrahedron* **23**, 3333
- 6 Klyne, W. (1950) *Biochem J* **47**, xl
- 7 Kubota, T and Tonami, F (1967) *Tetrahedron* **23**, 3353
8. Mahato, S B, Sahu, N P., Ganguly, A N, Kasai, R and Tanaka, O. (1980) *Phytochemistry* **19**, 2017.
- 9 Stothers, J B (1972) *Carbon-13 NMR Spectroscopy*. Academic Press, New York
- 10 Kasai, R, Okihara, M, Asakawa, J, Mizutani, K and Tanaka, O (1979) *Tetrahedron* **35**, 1427
- 11 Seo, S, Tomita, Y, Tori, K and Yoshimura, Y (1978) *J Am Chem Soc* **100**, 3331
- 12 Tori, K, Yoshimura, H, Seo, S, Sakurawi, K., Tomita, Y and Ishii, H (1976) *Tetrahedron Letters* 4163
13. Kimata, H, Himaya, C, Yahara, S, Tanaka, O, Ishikawa, O and Aiura, M (1979) *Chem Pharm Bull* **27**, 1836
14. Rao, G S, Sinsheimer, J. E and Cochran, K W (1974) *J Pharm Sci* **63**, 471
- 15 Yamamoto, M., Kumagai, A and Yamamura, Y. (1975) *Arzneim-Forsch.* **25**, 1021
16. Abe, H, Sakaguchi, M, Konishi, H, Tani, T and Arichi, S (1978) *Planta Med* **34**, 160
17. Yamamoto, M., Kumagai, A and Yamamura, Y. (1975) *Arzneim-Forsch* **25**, 1240
- 18 Kubota, T and Hinoh, H (1968) *Tetrahedron Letters* 303